• Home
  • Latest
  • Fortune 500
  • Finance
  • Tech
  • Leadership
  • Lifestyle
  • Rankings
  • Multimedia
CommentaryAI

A.I. will be crucial to companies outside of Silicon Valley—and they need a new playbook for it

By
Andrew Ng
Down Arrow Button Icon
By
Andrew Ng
Down Arrow Button Icon
April 26, 2020, 12:00 PM ET
A worker assembles mobile phones at an Indian Lava phone manufacturer factory in Noida on August 22, 2019.
A worker assembles mobile phones at an Indian Lava phone manufacturer factory in Noida on August 22, 2019. (Photo by Sajjad HUSSAIN / AFP) (Photo credit should read SAJJAD HUSSAIN/AFP via Getty Images)Sajjad Hussain—AFP/Getty Images

While artificial intelligence has become a ubiquitous topic in the business world, there is still important work to do to translate the promising experiments we see in the news to valuable and practical implementation. Large consumer Internet companies pioneered practical A.I. deployments, but their processes do not necessarily apply in other industries where A.I. projects face unique challenges.

As a result, we frequently see non-digital companies struggle with A.I. deployment. Manufacturing, for instance, is primed for A.I. transformation, but only 5% of more than 200 manufacturers surveyed by the MAPI Foundation say they have a clearly defined strategy for A.I. In a separate Accenture report that surveyed 1,500 C-suite executives in 16 industries, 76% of respondents said they struggle with how to scale the technology. This stands in contrast to the consumer Internet industry, where large A.I. systems already power everything from producing search results to language translation to targeted advertising.

For A.I. to reach its full potential, those implementing the technology must develop new techniques to enable its deployment across all industries. (My company, Landing AI, helps companies with A.I. adoption.) In particular, companies outside Silicon Valley need to overcome three challenges to increase their odds of success.

First, they must learn to harness small data. The tech giants use vast volumes of data collected from billions of users to train A.I. models. Techniques developed for these big data settings need to be adapted to the much smaller datasets that most other industries have. 

Take the challenge of building an A.I.-powered system for a factory to detect scratches on smartphones. No smartphone manufacturer has a million scratched phones lying around from which it can capture pictures of scratches. Thus, many manufacturers do not have enough data to power conventional A.I. models. Manufacturing A.I. application builders often need to get by with 100 or fewer images.

Fortunately, new small data technologies are starting to make this possible. For example, a new data generation technique may be able to take 10 images of a rare defect and synthesize an additional 1,000 images that an A.I. system can then learn from. Using another method, an A.I. model might first learn to find dents from a large dataset of 10,000 pictures of dents collected from different products and data sources. Having learned about dents in general, it can then transfer this knowledge to detect dents in a specific novel product with only a few pictures of dents. 

Such advanced small data techniques may enable A.I. to finally break into traditional industries like manufacturing, agriculture, and health care.

Second, A.I. models serving non-digital firms must bridge the gap between research settings and the real world. Many A.I. systems that achieve high accuracy in a research paper or proof of concept do not perform as well when deployed. 

For example, many research groups have published articles that report A.I.’s ability to diagnose from x-rays or other medical images at a level of accuracy comparable or superior to that of radiologists. So why is it still so rarely used? 

One reason is that many of these studies are carried out in well-controlled settings where the A.I. learns from and is tested on consistently high-quality data. Doing well in such a setting leads to a successful proof of concept or publication. However, if the same A.I. system is deployed in a hospital where x-ray images are slightly blurrier or the protocol for collecting images is slightly different, it fails to adapt.

One solution is to start by only using A.I. to analyze images on which it has high confidence, while relying on a human radiologist for all other cases. The A.I. then learns from the radiologist and is gradually able to take on more responsibility. 

Third, non-tech companies deploying A.I. must be aware of its potential to disrupt employees, customers, and other stakeholders in the business, and appropriately manage the change the technology brings.

For instance, an A.I. system that helps doctors triage patients in an emergency room affects many—from doctors and intake nurses to insurance underwriters. To keep projects on track, people must be brought on board with A.I. implementation, and their workflow must be adjusted to take advantage of the technology.

I have seen many A.I. teams underestimate the human side of organizational change management. Overcoming this challenge is not easy, but there are steps businesses can take to mitigate disruption.

For one, organizations have to identify all the stakeholders that will be involved with the change process. Managers should either communicate with them directly or find ways to have their colleagues talk to them about what is coming. Many teams make decisions by consensus, so it is important to minimize the odds of any stakeholder blocking or slowing down implementation. 

Next, companies need to budget enough time to properly implement A.I. They must spend enough time to understand stakeholders’ roles and beliefs, assess how many roles will change, and explain to people what the A.I. will actually do and how the system may benefit them. 

It’s crucial that the company reassure stakeholders during A.I. implementation. Many people still harbor significant fear, uncertainty, and doubt about A.I. Providing a basic education about the technology eases these conversations. Organizations can also reassure people by rigorously testing and auditing the technology, and showing the results to stakeholders so they’re convinced it works safely.

Organizations should consider beginning A.I. deployment with a pilot that affects a relatively small number of stakeholders. A quick success can then be used as a showcase to get buy-in from a larger group.

PwC estimates that A.I. will generate $15.7 trillion globally by 2030. Much of this value will come from outside Silicon Valley. A.I. is on its way to transforming every industry; the process will be a lot easier if businesses take the right actions along the way.

Andrew Ng is founder and CEO of Landing AI.

Our mission to help you navigate the new normal is fueled by subscribers. To enjoy unlimited access to our journalism, subscribe today.

More opinion in Fortune:

—How we can prevent being caught off guard by a pandemic like the coronavirus ever again
—An Earth Day CEO summit shows how dramatically corporate values have changed
—Which companies’ stocks will thrive after the coronavirus crash?
—Northwestern Mutual CEO: 3 lessons learned from economic crises before COVID-19
—Listen to Leadership Next, a Fortune podcast examining the evolving role of CEO
—WATCH: CEO of Canada’s biggest bank on the keys to leading through the coronavirus

Listen to our audio briefing, Fortune 500 Daily

About the Author
By Andrew Ng
See full bioRight Arrow Button Icon

Latest in Commentary

Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025

Most Popular

Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Finance
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam
By Fortune Editors
October 20, 2025
Rankings
  • 100 Best Companies
  • Fortune 500
  • Global 500
  • Fortune 500 Europe
  • Most Powerful Women
  • Future 50
  • World’s Most Admired Companies
  • See All Rankings
Sections
  • Finance
  • Leadership
  • Success
  • Tech
  • Asia
  • Europe
  • Environment
  • Fortune Crypto
  • Health
  • Retail
  • Lifestyle
  • Politics
  • Newsletters
  • Magazine
  • Features
  • Commentary
  • Mpw
  • CEO Initiative
  • Conferences
  • Personal Finance
  • Education
Customer Support
  • Frequently Asked Questions
  • Customer Service Portal
  • Privacy Policy
  • Terms Of Use
  • Single Issues For Purchase
  • International Print
Commercial Services
  • Advertising
  • Fortune Brand Studio
  • Fortune Analytics
  • Fortune Conferences
  • Business Development
About Us
  • About Us
  • Editorial Calendar
  • Press Center
  • Work At Fortune
  • Diversity And Inclusion
  • Terms And Conditions
  • Site Map

© 2025 Fortune Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance of our Terms of Use and Privacy Policy | CA Notice at Collection and Privacy Notice | Do Not Sell/Share My Personal Information
FORTUNE is a trademark of Fortune Media IP Limited, registered in the U.S. and other countries. FORTUNE may receive compensation for some links to products and services on this website. Offers may be subject to change without notice.


Most Popular

placeholder alt text
Success
The scientist who helped create AI says it’s only ‘a matter of time’ before every single job is wiped out—even safer trade jobs like plumbing
By Orianna Rosa RoyleDecember 19, 2025
2 days ago
placeholder alt text
Economy
James Talarico says the biggest 'welfare queens' in America are 'the giant corporations that don't pay a penny in income taxes'
By Dave SmithDecember 20, 2025
21 hours ago
placeholder alt text
Success
As graduates face a ‘jobpocalypse,’ Goldman Sachs exec tells Gen Z they need to know their commercial impact 
By Preston ForeDecember 18, 2025
3 days ago
placeholder alt text
Economy
Sneaking unemployment rate means the U.S. economy is inching closer to a key recession indicator, says Moody’s
By Eleanor PringleDecember 19, 2025
2 days ago
placeholder alt text
Future of Work
'They'll lose their humanity': Dartmouth professor says he's surprised just how scared his Gen Z students are of AI
By Nick LichtenbergDecember 20, 2025
19 hours ago
placeholder alt text
AI
Meta’s 28-year-old billionaire prodigy says the next Bill Gates will be a 13-year-old who is ‘vibe coding’ right now
By Eva RoytburgDecember 19, 2025
2 days ago

Latest in Commentary

Thomas “Tom” McInerney is President, CEO and a Director of Genworth Financial
CommentaryCaregiving
I’m a CEO who’s spent nearly 40 years talking to presidents, lawmakers and leaders about our long-term care crisis. They knew this moment was coming
By Thomas McInerneyDecember 19, 2025
2 days ago
Kristin Olson
Commentaryinvesting advice
I lead Goldman Sachs’ alternatives for wealth globally. Around the world, investors want to know more 
By Kristin OlsonDecember 19, 2025
2 days ago
unemployed
CommentaryLayoffs
The AI efficiency illusion: why cutting 1.1 million jobs will stifle, not scale, your strategy
By Katica RoyDecember 18, 2025
3 days ago
Muddu
CommentaryIT
IT service is reaching its breaking point. At Salesforce, we see 3 tipping points
By Muddu SudhakarDecember 18, 2025
3 days ago
small business
CommentaryLayoffs
Our data shows that companies of 500 and fewer workers mostly avoided the AI layoffs. They’re making AI work for them
By Gabby BurlacuDecember 18, 2025
3 days ago
Sophia Romee is the General Manager of the GenAI Studio at the College Board
CommentaryEducation
Gen Z is on the fence about AI in the classroom. That’s a good thing
By Sophia RomeeDecember 18, 2025
3 days ago