Skip to Content

Will Functional Genomics Cure Big Pharma’s Failure Rate?

Drug discovery is a notoriously expensive and inefficient endeavor. Nine of 10 drug candidates that go through the cost-intensive, years-long clinical trial process never make it to market. That 90% failure rate—a drag on medical progress and a factor often cited by pharmaceutical companies to justify sky-high drug prices—has proven frustratingly sticky even in an era of breakneck scientific and technological advancements.

Consider: it’s been nearly two decades since President Bill Clinton announced the completion of the first-ever survey of the human genome, “an epic-making triumph of science and reason” that Clinton said would bring “immense, new power to heal” and “cure diseases like Alzheimer’s, Parkinson’s, diabetes, and cancer by attacking their genetic roots.”

Those lofty goals are still very much a work in progress, but Hal Barron, the head of R&D for the U.K.-based pharmaceutical giant GSK, thinks the industry may at last be on the cusp of a meaningful and productive genetic revolution. Though Barron, a cardiologist who previously held leadership roles at Genentech and Alphabet’s immortality lab Calico, hesitates to make such sweeping claims, he said at Fortune’s Brainstorm Health conference in San Diego last week that this moment “feels different.”

The genome sequencing efforts of the past, while foundational, offered limited “structural” insight he explained. Scientists could decode the DNA and identify mutations in a chain of base pairs, but the sequencing did little to explain the resulting biology—or how those mutations affect the way genes function (and in turn, impact the humans who hold them).

He’s optimistic about the current moment because of a handful of technologies—namely cheaper, high-throughput DNA sequencing and deep learning—have recently and simultaneously made the study of functional genomics feasible for big pharma companies like GSK. Functional genomics, he explained, can help link the genetic variant to function, solve the genetic mysteries that have piled up in recent years (why 30% of individuals with a certain mutation get Parkinson’s Disease, but the other 70% does not, for example) and pinpoint drug targets. Barron says data shows drug development is twice as likely to succeed when the drug target is genetically validated.

A handful of genetic databases, from the UK Biobank to 23andMe’s consenting customer pool (GSK did a deal with the genetic testing company last summer), have made the validation work more possible. As has deep learning, with its power to analyze the massive, multidimensional, “wildly complicated” data sets that make up human biology said Barron.

The research chief said it’s early days for functional genomics and that GSK’s program is in its infancy, but he plans to move quickly. Said Barron: “We’re hoping to be the leaders.”

For more coverage of Fortune’s Brainstorm Health conference, click here. For news delivered daily to your inbox, subscribe to Fortune’s Brainstorm Health Daily newsletter.